41 research outputs found

    The Nornir run-time system for parallel programs using Kahn process networks on multi-core machines – A flexible alternative to MapReduce

    Get PDF
    Even though shared-memory concurrency is a paradigm frequently used for developing parallel applications on small- and middle-sized machines, experience has shown that it is hard to use. This is largely caused by synchronization primitives which are low-level, inherently non-deterministic, and, consequently, non-intuitive to use. In this paper, we present the Nornir run-time system. Nornir is comparable to well-known frameworks such as MapReduce and Dryad that are recognized for their efficiency and simplicity. Unlike these frameworks, Nornir also supports process structures containing branches and cycles. Nornir is based on the formalism of Kahn process networks, which is a shared-nothing, message-passing model of concurrency. We deem this model a simple and deterministic alternative to shared-memory concurrency. Experiments with real and synthetic benchmarks on up to 8 CPUs show that performance in most cases scales almost linearly with the number of CPUs, when not limited by data dependencies. We also show that the modeling flexibility allows Nornir to outperform its MapReduce counterparts using well-known benchmarks. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited

    Processes and factors involved in decisions regarding return of incidental genomic findings in research

    Get PDF
    Purpose: Studies have begun exploring whether researchers should return incidental findings in genomic studies, and if so, which findings should be returned; however, how researchers make these decisions—the processes and factors involved—has remained largely unexplored. Methods: We interviewed 28 genomics researchers in-depth about their experiences and views concerning the return of incidental findings. Results: Researchers often struggle with questions concerning which incidental findings to return and how to make those decisions. Multiple factors shape their views, including information about the gene variant (e.g., pathogenicity and disease characteristics), concerns about participants’ well-being and researcher responsibility, and input from external entities. Researchers weigh the evidence, yet they face conflicting pressures, with relevant data frequently being unavailable. Researchers vary in who they believe should decide: participants, principal investigators, institutional review boards, and/or professional organizations. Contextual factors can influence these decisions, including policies governing return of results by institutions and biobanks and the study design. Researchers vary in desires for: guidance from institutions and professional organizations, changes to current institutional processes, and community-wide genetics education. Conclusion: These data, the first to examine the processes by which researchers make decisions regarding the return of genetic incidental findings, highlight several complexities involved and have important implications for future genetics research, policy, and examinations of these issues

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Parallel programming models and run-time system support for interactive multimedia applications

    No full text

    Geospatial Point Density

    No full text
    This paper introduces a spatial point density algorithm designed to be explainable, meaning ful, and efficient. Originally designed for military applications, this technique applies to any spatial point process where there is a desire to clearly understand the measurement of density and maintain fidelity of the point locations. Typical spatial density plotting algorithms, such as kernel density estimation, implement some type of smoothing function that often results in a density value that is difficult to interpret. The purpose of the visualization method in this paper is to understand spatial point activity density with precision and meaning. The temporal tendency of the point process as an extension of the point density methodology is also discussed and displayed. Applications include visualization and measurement of any type of spatial point process. Visualization techniques integrate ggmap with examples from San Diego crime data
    corecore